

FIPRONIL EXPOSURE: A GROWING CONCERN FOR REPRODUCTIVE HEALTH

Payal Malame¹, Dr. Mangala Thakare², Dr. Varsha Dhurvey³, Nayan Kumbhare⁴

- 1. Ms. Payal Malame, Student, PGTD of Zoology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur (M.S) India
- 2. Dr. Mangala Thakare, Assistant Professor, PGTD of Zoology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur (M.S) India.
- **3.** *Dr. Varsha Dhurvey*, Professor, PGTD of Zoology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur (M.S) India..
- 4. *Mr. Nayan Kumbhare, Research Scholar,* PGTD of Zoology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur (M.S) India.

ABSTRACT:

Fipronil, a widely used insecticide, has been linked to reproductive toxicity in various species. This review summarizes the existing evidence on the effects of fipronil on the reproductive system, highlighting its impact on fertility, sperm quality, and gonadal development. Studies in mammals, birds, and insects consistently show that fipronil exposure leads to reduced fertility, decreased sperm count and viability, and altered gonadal morphology. The mechanisms underlying these effects involve disruption of hormonal balance, oxidative stress, and DNA damage. These findings have significant implications for human health, wildlife conservation, and environmental sustainability, emphasizing the need for stricter regulations and safer alternatives to fipronil.

KEYWORDS: Fipronil, Reproductive toxicity, Fertility, Hormonal disruption, Histology.

INTRODUCTION:

Fipronil a phenyl pyrazole insecticide, was first developed by Rhône Poulenc Ag Company (now Bayer Crop Science) in 1987, it was introduced to the market in 1993 and registered for use in the United States in 1996^{1,2,3}. Fipronil is (5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-fluoromethylsulfinyl pyrazole) a broad-spectrum insecticide belonging to

CORRESPONDING AUTHOR:	RESEARCH ARTICLE
Dr. Mangala Thakare Assistant Professor, PGTD of Zoology, Rashtrasant Tukadoji Maharaj Nagpur U Email: mangu81084@gmail.com	niversity, Nagpur (M.S) India

the phenylpyrazole chemical family, classified by the World Health Organization (WHO) as a Class II moderately hazardous pestiside, a potent phenylpyrazole insecticide⁴.

Fipronil, a relatively new yet extensively utilized insecticide, has gained recognition for effectively addressing insect resistance and public health concerns typically associated with traditional pesticide families⁵. Fipronil based products, marketed under various trade names (Chipco VR, Choice, ICON 6.2FST, Over n' Out and TeckPac) have gained global popularity for effective

Fipronil has been detected in various environmental samples, its presence has been confirmed in surface water, urban waterways, rural rivers, and agricultural runoff, as well as in indoor and outdoor dust, soil, and wastewater effluent^{7,8,9,10}. Fipronil is susceptible to degradation in water and soil through various abiotic and biotic processes, resulting in the formation of several breakdown products, including: Fipronil sulfide (through reduction), Fipronil amide (through hydrolysis), Desulfinyl fipronil (through photolysis), Fipronil sulfone (through oxidation), these degradation products are formed when fipronil is present in soil or water, highlighting the importance of environmental factors in its breakdown^{11,12}. Fipronil's sulfone metabolite and fipronil-desulfinyl, a photodegradation product, demonstrate enhanced toxicity to insect and non-target species compared to the parent compound¹³. In animals, fipronil undergoes primary metabolism to fipronil-sulfone via cytochrome P450-mediated oxidation ¹⁴.

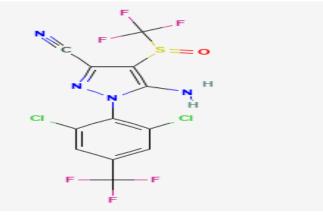
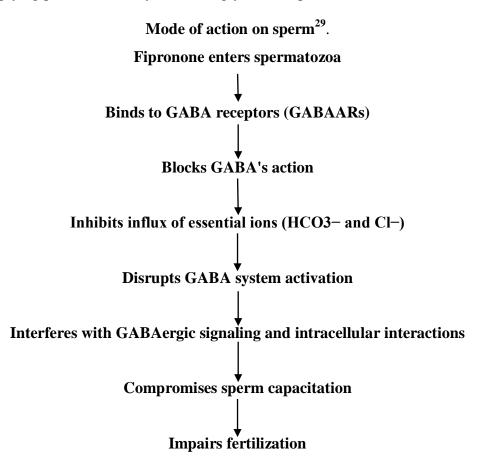


Fig: Chemical structure of Fipronil (<u>https://pubchem.ncbi.nlm.nih.gov</u>)


Fipronil is a white, powdery substance with a distinctive moldy smell¹⁵. Fipronil has the molecular formula $C_{12}H_4C_{12}F_6N_4OS$ and molecular weight of 437.1 g/mol. Its IUPAC name is 5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfinyl)pyrazole-3-carbonitrile, It is slightly soluble in water and has a melting point of 200-201°C. The density of fipronil is 1.477-1.626 g/cm3 at 20 °C. Fipronil has a low vapor pressure (2.78X10-9 mm Hg at 25 °C) and a high log Kow (4.0), which means that it is more likely to partition into organic matter than into water¹⁶. Fipronil insecticides are the only toxicants deliberately introduced into ecosystems as a targeted approach to improve food safety by effectively managing pest populations and regulating disease-transmitting vectors¹⁷. It controls pests like cockroaches, mosquitoes, locusts, fleas, lice and ticks in dogs, cats, and cattle^{18,19}.

General toxixcity

Studies in mice and rats have demonstrated that oral administration of fipronil leads to toxicological effects, including neurotoxicity, hepatotoxicity, reproductive toxicity, and disruption of endocrine function^{20,21,22}. Fipronil's lipophilic characteristics facilitate its sequestration in highly lipidic tissues, such as the brain, resulting in extended persistence²³. Human ingestion of fipronil can cause symptoms such as sweating, nausea, vomiting, headache, abdominal pain, dizziness, agitation, weakness, and seizures. Fortunately, these effects are typically reversible and resolve on their own²⁴. Fipronil's use on rabbits has been discouraged by veterinarians due to adverse effects, including depression and decreased appetite ²⁵.

Mode of action

Fipronil (FPN) functions as a GABAergic insecticide by binding to GABA receptors, inhibiting chloride ion uptake, and inducing uncontrolled hyperexcitation, convulsions, and cellular mortality in invertebrates²⁶. Research indicates that fipronil completely inhibits various human glycine receptor subtypes (α 1, α 1 β , α 2, and α 3), mirroring its potency at vertebrate GABAA receptors, implying potential toxicity across all glycine receptor isoforms^{27,28}.

37

METHODOLOGY

Literature searches were conducted using PubMed, Google Scholar, Science Direct, and Scopus. Data was extracted from abstracts and introductions of included studies, focusing on study design and duration, fipronil exposure levels and duration and models for research.

This review synthesizes two decades of research (2004-2024) on fipronil's effects on male and female reproductive systems.

EFFECT OF FIPRONIL ON REPRODUCTIVE SYSTEM

Hematological evaluation

Several studies have reported decreases in RBC-related parameters following fipronil exposure, significantly decreases in RBC count, hemoglobin, and hematocrit in treated animals, though the specific dose of 0.3 mg/1 mL was associated with increased WBC counts in monkeys³⁰. Decreased packed cell volume, hemoglobin, total erythrocyte count, and total leucocyte count in White Leghorn cockerels exposed to fipronil at doses of 1, 5, and 10 mg/kg was reported³¹. Similar reductions in erythrocyte count and hemoglobin content in Nile Tilapia was observerd at concentrations of 0.014, 0.0042, and 0.002 mg of fipronil³² and erythrocyte counts, hemoglobin, and hematocrit decreased in Cyprinus carpio exposed to fipronil at 0.08 mg/L and 0.10 mg/L³³. Significant reductions is seen in erythrocyte indices (MCV, MCH), hemoglobin, RBCs, hematocrit, lymphocytes, and platelets³⁴. Decreased of hematocrit level in Rhamdia quelen at 0.3 and 0.4 mg/L, further highlighting the impact on RBC-related parameters³⁵.

Sr.no	Model	Doses	Duration	Interference	Reference
1.	Adult Rhesus Monkeys	0.3 mg/1 mL	4 hour	Exhibited significant decreases in red blood cell (RBC) count, hemoglobin, and hematocrit. Conversely, white blood cell (WBC) counts were elevated	Khan <i>et al.</i> , (2003)
2.	White Leghorn cockerels	1, 5, and 10 mg/kg	100 days	Fipronil's resulted in significant decreases in packed cell volume, hemoglobin levels, total erythrocyte count, and total leucocyte count	Adhikari <i>et al.</i> , (2014)
3.	Nile Tilapia	0.014, 0.0042, and 0.002 mg of fipronil	10 weeks	Fipronil resulted in significant decreases in erythrocyte count, hemoglobin content, and total leukocytic coun	El-Murr <i>et al.</i> , 2015
4.	Cyprinus carpio	Fipronil exposure 0.08 mg/L and 0.10 mg/L	12 days	Significantly decreased erythrocyte count, hemoglobin, and hematocrit, conversely, mean corpuscular volume, total leukocyte count, neutrophils, monocytes, and lymphocytes were	Ghaffar <i>et al.</i> , (2018)

38

				significantly increased in Cyprinus carpio	
5.	Male albino mice	Fipronil (1.44 mg/kg b.w)	28 days	Reductions in erythrocyte indices (MCV, MCH), hemoglobin, RBCs, hematocrit, lymphocytes, and platelets	Abouelghar <i>et</i> <i>al.</i> ,(2019)
6.	36 silver catfish	f 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.8 mg L–1 of fipronil.	96 Hours	Including decreased hematocrit rates at 0.3 and 0.4 mg L ⁻¹ , and decreased white blood cell and total thrombocyte counts	Fredianelli <i>et al.,</i> (2019).

Weight response

Studies have consistently demonstrated that fipronil intoxication leads to a decrease in testicular weight. Fipronil caused a significant decrease in the relative weight of testes in rats at a dose of 4.5 mg/kg at day 20 of exposure³⁶. A significant reduction in testicular size in males and a marked decrease in ovarian size in females after treatment with 0.05% fipronil³⁷. In subsequent studies, a dramatic decrease in the weight of the testes index, epididymis, and accessory sex organs following fipronil administration³⁸ and reductions in both body weight and organ weight of testis after oral administration of fipronil at 24.25 mg/kg³⁹. Most recently, a significant reduction in the testis weight/body weight ratio was observed⁴⁰, further supporting the findings of previous studies.

Sr.no	Model	Doses	Duration	Interference	Reference
1.	60 adult male cockerels	. Fipronil(1.5 ,2.5 , 3.5 and 4.5	60 day	Decrease in the relative weight of testes in rats	Hussian <i>et</i> <i>al.</i> ,(2018)
2.	Blaps polycresta	0.05% fipronil	3 days	Induced morphological deformities in the external reproductive structures of males and a notable deformation in one ovary of females, reduction in testicular size.	Osman W., 2018
3.	36 Male albino rats	20 mg Fipronil /kg and	60days,	Fipronil exposure causes severe damage to reproductive organs, decrease in the weight of the testes index, epididymis, and accessory sex organs	Tohamy <i>et</i> <i>al.</i> ,(2021)
4.	Albino rats	Fipronil (24.25 mg/kg b.wt)	90 days	Fipronil reduced body weight and organ weight Histopathological damage testis, Increased sperm morphological abnormalities	Verma(2022).

 Vol-6, Issue-03, March 2025 ISSN (E): 2583-1348
 39

 AGPE The Royal Gondwana Research Journal of History, Science, Economic, Political and Social science

				and Decreased sperm motility, viability, and density	
5.	48 Male albino rats	Fipronil(1/30 and 1/60 LD50)	3 months	Fipronil exposure leads to testicular atrophy, mild diffuse degeneration was observed in the seminiferous tubules, accompanied by epithelial thinning and sertoli cells vacuolation, there were significant reduction in sperm count, reduction in the testis weight.	Abdel-Mobdy et al.,(2024)

Sperm motility and morphology

Numerous studies have highlighted significant alterations in sperm morphology, motility, and viability after exposure to fipronil. For example, substantial decreases was observed in sperm density, motility, viability, and normal morphology, as well as an increase in sperm abnormalities⁴¹ a concentration of 0.1 µg/L of fipronil decreased spermatozoa concentration and sperm viability, while increasing sperm metabolic rate⁴² as well as impaired sperm motility was observed, with a notable reduction in progressive motile spermatozoa and an increase in non-motile spermatozoa after exposure to 3 mg/kg fipronil⁴³. Subsequent studies, confirmed the negative impact of fipronil on fertility, demonstrating a decrease in spermatozoa quantity and increased spermatozoa mortality⁴⁴. Exposure to a 0.05% fipronil solution induced morphological deformities in the external reproductive structures of males and caused notable deformation in the ovary of females³⁷.Further evidence of fipronil's genotoxicity by reporting structural chromosome aberrations and sperm abnormalities induced by fipronil exposure³⁴. More recent studies have continued to demonstrate the adverse effects of fipronil on sperm quality, high concentrations of fipronil significantly impaired various sperm motility parameters²⁹. Substantial decreases was observed in sperm density, motility, viability, and normal morphology after exposure to concentrations ranging from 5-20 mg/kg of fipronil³⁸.Fipronil exposure negatively affected sperm quality, leading to increased sperm morphological abnormalities and decreases in sperm motility, viability, and density³⁹. Impaired sperm motility after exposure to 10-200 μ M fipronil⁴⁵ further confirmed these findings, demonstrating that fipronil exposure significantly impaired sperm motility and kinematics 46 .

Sr.no	Model	Doses	Duration	Interference	Reference
1.	32 Male rats	Fipronil	4 week	Fipronil exposure causes	Khan <i>et al.</i> ,(2015)
		(2.5,5.0 and		significant damage to sperm,	
		10mg/kg)		including reduced viability,	
				motility, and acrosome integrity.	
				This damage is likely due to	
				increased oxidative stress and	

Vol-6, Issue-03, March 2025 ISSN (E): 2583-1348 AGPE The Royal Gondwana Research Journal of History, Science, Economic, Political and Social science

		T	1		
				lipid peroxidation, leading to	
				sperm apoptosis.	
2.	Honey bees	$0.1 \mu\text{g/L}$ of	20 days	Decrease spermatozoa	Kairo <i>et al.</i> , 2016
	(drones)	fipronil		concentration and sperm viability,	
				while increasing sperm metabolic	
				rate, ultimately impairing drone	
		(0.02.0.2		fertility	D I
3.	Male rats	(0.03, 0.3 or)	Gestational	It alters sperm motility, reducing	Barros <i>et al</i>
		3 mg kg^{-1})	Day 15 until	motile spermatozoa and increasing	.,(2016)
			Postnatal	non-mobile spermatozoa,	
			Day 7.	potentially compromising sperm	
4	TT	0.1	20.1	quality.	Kaina (1 2017
4.	Honey	$0.1 \mu g$ -	20 days	Fipronil did not impact drone	Kairo et al., 2017
	bees(drones)	L ¹ fipronil1		survival, maturity, or semen	
				volume, it did negatively affect fertility. This was due to a	
				reduction in spermatozoa quantity	
				coupled with increased	
				spermatozoa mortality	
5.	Blaps	0.05% fipronil	3 days	Induced morphological deformities	Osman W. 2018
э.	polycresta		5 augs	in the external reproductive	55mmin 11.2010
	porjeresta			structures of males and a notable	
				deformation in one ovary of	
				females	
6.	Male albino	Fipronil (1.44	28 days	Fipronil to induce genotoxic effects	Abouelghar et
0.	mice	mg/kg b.w)		involving structural chromosome	al.,(2019)
				aberrations (SCAs) and sperm-	
				shape abnormalities. The	
				mechanism of this genotoxic effects	
				could be also attributed to reactive	
				oxygen species (ROS)-mediated	
				oxidative stress .	
1.	Male mouse	(0.1, 1, 10,	Incubated at	FPN treatment significantly	Bae et al., 2020
		100, and 300	37 °C for 2	reduced sperm motility, motion	
		μM)	h	kinematic parameters, and	
				intracellular ATP level, whereas the	
				acrosome reaction was enhanced	
2.	36 Male	20 mg Fipronil	60days,	Fipronil exposure causes	Tohamy et
	albino rats	/kg and		severe damage to	al.,(2021)
				reproductive organs, leading	
				to decreased sperm quality,	
				1 1 1	
				reduced testosterone levels,	
		<u> </u>		and impaired fertility	
3.	Albino rats	Fipronil (24.25	90 days	Fipronil reduced body weight and	Verma(2022).
		mg/kg b.wt)		organ weight Histopathological	
				damage testis, Increased sperm	
				morphological abnormalities and	
				Decreased sperm motility, viability,	
	Dest	E 's a second 1/10	20	and density	
4.	Boar	Fipronil(10-	30 minutes	Sperm motility in all fipronil	Adikari <i>et al.</i> ,
	spermatozoa	200 µM)	and 2 hours	treatment groups at 30 min, 2 hrs of	(2022)
			of	incubation, gradual reduction in	
			incubation	motion kinematics significantly	

				higher percentage of dead sperm was observed at 200 µM fipronil	
5.	Male rat spermatozoa	fipronil exposure(0.1,1 ,10,100 and 300 µM	90 minutes. Two-dimen sional electrophore sis	Reduced sperm motility and ,fipronil exposure led to decline in capacitated sperm drastic increase in the number of acrosome reacted sperm and deficiencies in intracellular ATP level	Bae <i>et al.</i> ,(2024)

Immunohischemistry

In recent studies, the effects of fipronil exposure on reproductive health have been extensively investigated. Fipronil exposure induced apoptosis in spermatogenic and epididymal cells, evidenced by a strong Casp3 reaction, Furthermore, they observed reduced cell proliferation in the testis and epididymis, as indicated by a weak PCNA reaction⁴⁷, further impact of fipronil, reveal the absence of immunostaining for spermatogonia and spermatocyte nuclei in most seminiferous tubules at administration of 20 mg/kg, suggesting a disruption in sperm cell development and maturation, which could impair fertility³⁸. More recently apoptotic changes in the reproductive organs of rats occurred , with increased BAX marker expression in the liver and testis following fipronil exposure (10 mg/kg for 6 weeks), indicating enhanced apoptotic activity⁴⁸. Together, these studies highlight the potential detrimental effects of fipronil on reproductive health, specifically by inducing apoptosis and disrupting normal cellular processes in the testis and epididymis.

Sr.no	Model	Doses	Duration	Interference	Reference
1.	28 Male mature rats	fipronil (5 mg/kg)	28 days	Fipronil exposure induced apoptosis in spermatogenic and epididymal cells, evidenced by a strong Casp3 reaction, Furthermore, they observed reduced cell proliferation in the testis and epididymis, as indicated by a weak PCNA reaction	Saleh et al.,(2020)
2.	36 Male albino rats	20 mg Fipronil /kg and	60days,	Fipronil exposure causes severe damage to reproductive organs, leading to decreased sperm quality, reduced testosterone levels, and impaired fertility	Tohamy et al.,(2021)
3.	24 Male wistar rats	10mg/kg fipronil	6 weeks	Reduce sperm count in epididymis and increase abnormal sperm in testis, Testicular damage evident with thickened tunica albuginea, interstitial edema, irregular seminiferous tubules ,widened lumen, separation of germinal cell layers and reduced sperm and leydig cells, epdidymal lesions and BAX marker increased.	Nakul (2024)

Histological alteration

Male

Several studies have documented the detrimental effects of fipronil on male reproductive systems, The highest radioactivity levels of fipronil sulfone were detected in testes following oral administration of fipronil (10-1 mg/kg)49. More severe damage, including necrosis, epithelial desquamation, and germ cell depletion, following subacute exposure to 10 mg/kg fipronil for 28 days50. At 5-10 mg/kg fipronil induced severe degenerative and necrotic changes in rat seminiferous tubules, leading to spermatogonia depletion and spermatozoa loss41. Testicular damage in cockerels at 3.5 mg/kg and 4.5 mg/kg, with thinner and disorganized seminiferous tubule epithelium, abnormal spermatozoa, and degenerative/necrotic cells at days 20, 40, and 6036. Severe testicular lesions, cystic dilatation of seminiferous tubules, arrested spermatogenesis, smooth muscle hypertrophy, and spermatogonial cell vacuolation in Coturnix japonica administered fipronil at LD50 values of 2.26 mg/kg and 11.3 mg/kg51. Even lower doses (5 mg/kg) of fipronil have been linked to reproductive toxicity in rats, including edema, spermatogenesis degeneration, and reduced sperm count47. Significant histopathological changes in mice testes exposed to 100 mg/kg fipronil sulfone52. 20 mg/kg fipronil for 60 days caused testicular and epididymal damage, characterized by exfoliation, necrosis, degenerative changes, shedding, vacuolation, and inflammation38, Chronic exposure to 1/30 and 1/60 of the LD50 of fipronil resulted in mild widespread degeneration of seminiferous tubules, decreased lining epithelium thickness, and Sertoli cell vacuolation40. A range of alterations, including thickened tunica albuginea, interstitial edema, variations in seminiferous tubule size, reduced Leydig cell numbers, and disrupted germinal cell layers after exposure to 10 mg/kg fipronil for 6 weeks 48.

Sr.no	Model	Doses	Duration	Interference	Reference
1.	Male rats	Fipronil oral dose (10 mg/kg)		Tissue analysis revealed highest radioactivity levels in adipose tissue, adrenals, liver, kidney, testes, primarily attributed to fipronil-sulfone.	Cravedi <i>et</i> <i>al.</i> ,(2013)
2.	24 Female swiss albino mice	10 mg/kg fipronil	28 days	Fipronil causes severe damage to the testes, leading to necrosis, epithelial desquamation, and reduced fertility	Badgujar et al.,(2014)
3.	32 Male rats	fipronil (2.5,5.0 and 10mg/kg)	4 week	Fipronil exposure causes severe degenerative and necrotic changes in rat seminiferous tubules, leading to spermatogonia depletion and spermatozoa loss	Khan <i>et</i> <i>al.</i> ,(2015)
4.	60 adult male cockerels	Fipronil(1.5 ,2.5 , 3.5 and 4.5	60 day	Thinner and disorganized seminiferous tubule epithelium, abnormal spermatozoa, and degenerative/necrotic cells	Hussian <i>et</i> <i>al.</i> ,(2017)
5.	Male Coturnix japonica	2.26 mg/kg and 11.3 mg/kg,	15 days	Observed severe testicular lesions, cystic dilatation of	Khalil <i>et al.,</i> (2017)

Vol-6, Issue-03, March 2025 ISSN (E): 2583-1348 AGPE The Royal Gondwana Research Journal of History, Science, Economic, Political and Social science

				seminiferous tubules, arrested	
				spermatogenesis, smooth muscle	
				hypertrophy, and	
				spermatogonial cell vacuolation	
6.	28 Male mature	fipronil (5	28 days	Fipronil causes severe damage to	Saleh <i>et</i>
0.	rats	mg/kg)		the testes, including fluid	al.,(2020)
		0 0 /		accumulation, edema,	
				spermatogenesis degeneration	
7.	Sixteen Male	fipronil	2 weeks	Fipronil sulfone causes severe	Suliman (2020)
	mice	sulfone(100		damage to the testes, including	
		mg/kg)		changes in testicular morphology,	
				damaged sperm production, and	
		20	60.1	potential infertility	T 1
8.	36 Male albino rats	20 mg Fipronil /kg	60days,	Fipronil exposure causes	Tohamy <i>et</i> <i>al.</i> ,(2021)
	rats	and		testicular and epididymal	<i>al.</i> ,(2021)
		and		damage, characterized by	
				exfoliation, necrosis,	
				degenerative changes,	
				shedding, vacuolation, and	
				inflammation.	
9.	48 Male albino	Fipronil(1/3	3 months	Fipronil exposure leads to	Abdel-Mobdy et
	rats	0 and 1/60		testicular atrophy, mild diffuse	al.,(2024)
		LD50)		degeneration was observed in the	
				seminiferous tubules, accompanied	
				by epithelial thinning and sertoli	
				cells vacuolation, there were	
				significant reduction in sperm	
10.	24 Male	10mg/kg	6 weeks	count. Reduce sperm count in epididymis	Nakul (2024)
10.	wistar rats	fipronil	U WEEKS	and increase abnormal sperm in	INAKUI (2024)
	wistur ruts	npronn		testis, Testicular damage evident	
				with thickened tunica albuginea,	
				interstitial edema, irregular	
				seminiferous tubules, widened	
				lumen, separation of germinal cell	
				layers and reduced sperm and	
				leydig cells, epdidymal lesions,	
				reduced sperm density and loss of	
				stereocilia and BAX marker	
				increased.	

Female

Fipronil's impact on female reproduction is a growing concern. Early studies on ticks reported significant alterations in oocyte development. Dose-dependent histological alterations in Rhipicephalus sanguineus oocytes, including mild alterations at 1 ppm, extensive vacuolation and ruptured yolk granules at 5 ppm, and severely altered oocytes with extensive vacuolation and loss of normal morphology at 10 ppm. The following year, fipronil caused significant alterations in Rhipicephalus sanguineus oocyte development, including cytoplasmic vacuolation, reduced microvilli, and altered germ vesicle shape⁵⁴. No abnormalities or treatment-related effects in the ovaries and thyroid of female rats exposed to fipronil at 0.1, 1.0, or 10.0 mg/kg/day⁵⁵. More recent

studies have continued to investigate fipronil's effects on female reproduction. Peripheral vacuolations in all oocytes of engorged Rhipicephalus microplus ticks exposed to fipronil⁵⁶. Ovarian damage in Rhipicephalum microplus ticks treated with a combination of fentanyl and fluazuron, including cytoplasmic disorganization, degradation, vacuolization, and altered oocyte developmental stage distribution⁵⁷.

Sr.no	Model	Doses	Duration	Interference	Reference
1.	Rhipicephalus sanguineus tick oocytes	1 ppm,5ppm, 10ppm fipronil	Immersed in Petri dishes containing the above different concentrations of fipronil, for 2 min	fipronil exposure caused dose- dependent histological alterations in oocytes, at 1 ppm, mild alterations were observed, while 5 ppm caused extensive vacuolation and ruptured yolk granules. The highest concentration of 10 ppm resulted in severely altered oocytes with extensive vacuolation and loss of normal morphology	Oliveira <i>et</i> <i>al.</i> , 2008
2.	60 partially fed females of <i>R</i> . <i>sanguineus</i>	fipronil (1, 5 and 10 ppm)	Immersed in fipronil for 2 minutes and incubated for 7 days	Causes structural damage to even fully developed oocytes. extensive cellular damage, including - Disrupted plasmic membrane mitochondrial damage, altered protein synthesis (affected protein granules), disrupted plasmic membrane, Mitochondrial damage, altered protein synthesis.	Oliveira <i>et</i> <i>al.</i> ,(2009)
3.	40 female rats	fipronil(0.1, 1.0, or 10.0 mg/kg/day)	6th to the 20th day	No treatment-related effects on ovaries and thyroid glands, no pathological abnormalities observed,	Magalhaes et al.,(2015)
4.	Rhipicephalus microplus (Acari: ixodidae female			Oocytes displayed peripheral vacuolations. Ultra-thin sections of the synganglion revealed distinct damage patterns, fipronil caused severe rupture of neural lamella and perineurium leading to neural cell apoptosis, whereas amitraz induced destruction of the neuropile region and widespread vacuolation in type I and II cortical cells.	Fular <i>et</i> <i>al.</i> ,(2022)
5.	Rhipicephalus microplus females	Fipronil((1.25 mg/kg)	20 days	The ovaries of females morphological changes, including: cytoplasmic disorganization, cytoplasmic degradation, irregular shape of the oocyte and germinal vesicle, reduction and vacuolization of yolk granules and oocyte disruption, ocytes were observed in smaller numbers In determinate oocytes were verified in the ovaries of the treated groups	Secchis et al.,(2022)

Hormone analysis

Fipronil 70 mg/kg altered hormone levels, increasing plasma progesterone and decreasing estradiol 96 hours post-treatment, suggesting endocrine-disrupting effects²⁰. Later decreased testosterone levels in rats exposed to high doses of fipronil. In addition to these hormonal disruptions, research on fipronil's interaction with estrogen signaling pathways revealed that fipronil and its sulfone metabolite acted as estrogen receptor alpha (ERa) inhibitors, demonstrating anti-estrogenic activity⁵⁹. Further studies, demonstrated that fipronil (0.03, 0.3, or 3 mg/kg) led to long-term effects on the epididymis, reducing testosterone secretion and suggesting interference with the hypothalamic-pituitary-gonadal axis⁴³, and 25 μ M fipronil selectively downregulated ERa expression and its regulated gene CDC2, as well as the upstream signaling molecule PES1, indicating disruption of ERα-mediated signaling⁶⁰. Moreover decreased testosterone and increased estradiol (E2) levels in Coturnix japonica at fipronil LD50 values of 2.26 mg/kg and 11.3 mg/kg, reported respectively⁵¹. Similarly, it was found that 3.23 mg/kg fipronil significantly reduced estradiol levels in male rats⁶¹. Moreover, exploration of the enantiomer-specific disruptions in hormonal activity of fipronil, emphasizing the importance of evaluating the endocrine-disrupting potential of phenylpyrazole insecticides on an enantiomer-specific basis⁶². Further it was found that fipronil treatment led to a marked decrease in both testosterone and luteinizing hormone (LH) levels⁶³, a finding corroborated where reduced testosterone levels were found by exposure of fipronil⁴⁸.

Sr.no	Model	Doses	Duratio	Interference	Reference
			n		
1.	Female wistar rats	Fipronil(70 , 140 and 280 mg/kg	96 h or 20 days	Fipronil treatment disrupted and extended estrous cycles, reduced pregnancy rates, and significantly altered Plasma progesterone and estradiol levels.	Ohi <i>et al.</i> ,(2004)
2.	Male Long– Evans rats	High doses (25, 50 mg/kg)	14 days	Exposure to high doses of fipronil resulted in a significant decrease in testosterone levels of rats	Moser <i>et al.</i> , (2014),
3.	Chinese Hamster Ovary (CHO- K1) cells	fipronil (6.4 x 10^{-7} M fipronil sulfone 9.8x 10^{-7} M	for 24 hrs	Fipronil and fipronil sulfone act as estrogen receptor antagonists (ERα) without agonistic activity	Lu <i>et al.</i> ,(2015)
4.	Male rats	(0.03, 0.3 or 3 mg kg ⁻¹)	0	It alters sperm motility, reducing motile spermatozoa ,reducing testosterone secretion and suggesting interference with the hypothalamic- pituitary-gonadal axis	Barros et al .,(2016)
5.	Female wistat rat plasma	Fipronil(25 µM)	48 hours	Fipronil down-regulates ERa expression, reduces CDC2 gene expression, suppresses PES1	Okazaki <i>et al.</i> ,(2016)

6.	Male Coturnix japonica	2.26 mg/kg and 11.3 mg/kg,	15 days	Significant alterations in hormone levels, with a decrease in testosterone and an increase in estradiol (E2) levels o	Khalil <i>et al.</i> , (2017)
7.	Male rats	exposure to fipronil (3.23 mg/kg	12 week	Significantly reduced (estradiol levels	Abdelrazek et al., (2017)
8.	Sixty Male New Zealand rabbits	(354 mg/kg fipronil) spirulina (10 g/kg of diet daily	4 weeks	Fipronil administration led to significantly decrease testosterone, LH, T3, and T4 levels as well as higher TSH level as recorded in fipronil	Howayda et al., (2022)
9.	Female rats			Fipronil, ethiprole, and flufiprole display anti-estrogenic effects, as evidenced by a dual-luciferase reporter gene assay, which revealed enantiomer-specific disruptions in hormonal activity,	Hu et al.,(2022)
10.	24 Male wistar rats	10mg/kg fipronil	6 weeks	Reduce sperm count in epididymis and increase abnormal sperm in testis, Testicular damage evident with thickened tunica albuginea, interstitial edema, irregular seminiferous tubules ,widened lumen,separation of germinal cell layers and reduced sperm and leydig cells, epdidymal lesions, reduced sperm density and loss of stereocilia and BAX marker increased.	Nakul (2024)

Biochemical analysis

Exposure to a sexes pesticide mixture fipronil (97and 95 mg/kg)–imadacloprid 450 mg/kg in both sexes for 28 days resulted in significant alterations in serum biochemical parameters, including a significant increase in the activity of serum enzymes, such as aspartate aminotransferase , alanine aminotransferase , alkaline phosphatase , urea, and gamma-glutamyltransferase , additionally, the study recorded a significant decrease in the level of serum uric acid, while total protein, albumin, and globulin concentrations were higher in treated rats, these biochemical changes

were accompanied by a significant decrease in testicular DNA and RNA concentrations in a dosedependent manner, as well as decreased testicular glutathione (GSH) levels⁶⁴ and exposure to 100 μ M fipronil (FPN) led to significant alterations in cell cycle regulation, including increased levels of inactivated CDK1, as well as elevated expression of P53 and P21 proteins in oocytes⁶⁵.

Sr.no	Model	Doses	Duration	Interference	Reference
1.	28 Adult male rats,	0.547,0.409,0.820 mg/bw/day) of imidacloprid and fipronil mixture	28 days,	The combination of fipronil and imidacloprid causes severe damage to testicular DNA and RNA, reduces antioxidant levels, and increases oxidative stress, leading to testicular genomic decline	Badawy <i>et al.</i> , (2018)
2.	Porcine ovaries	Fipronil (0,30,50,100µM	44 hours	Fipronil exposure impaired oocyte maturation by Decreasing polar body extrusion, Arrested germinal vesicle stage, further Increased ROS levels and DNA damage, Enhanced apoptosis and mitochondrial dysfunction, Disrupted cell cycle progression (CDK1 cyclin B- 1)and Activated ATM-P53-P21 pathway	Zhou <i>et</i> <i>al.</i> ,(2019)

Effect of fipronil on Membrane lipid peroxidation

Fipronil (FIP) exposure significantly elevated lipid peroxidation in vivo, as evidenced by increased malondialdehyde (MDA) concentrations in spermatozoa of male Wistar rats treated with FIP at doses of 2.5, 5, and 10 mg/kg body weight for 28 days⁴¹ similarly administration of fipronil at a dose of 5 mg/kg significantly elevated MDA levels in testis o rats⁶⁶.

Sr.no	Model	Doses	Duration	Interference	Reference
1.	32 Male rats	Fipronil (2.5,5.0 and 10mg/kg)	4 week	Fipronil exposure causes significant damage to sperm, including reduced viability, motility, and acrosome integrity. This damage is likely due to increased oxidative stress and lipid peroxidation, leading to sperm apoptosis.	Khan <i>et al.</i> ,(2015)
2.	Male rats	Fipronil 5mg/kg and 5mg/kg fipronil + vitamine	14 days,	Fipronil causes a decrease in sperm concentration and testicular glutathione levels, leading to oxidative stress and sperm depletion, elevated	Mazzo <i>et al.</i> , (2018)

Vol-6, Issue-03, March 2025 ISSN (E): 2583-1348 AGPE The Royal Gondwana Research Journal of History, Science, Economic, Political and Social science

E	E 100 mg/kg	MDA levels in testis of rats.	
	mg∕kg for		

Reactive oxygen species

Treatment of Wistar rats with FIP at doses of 2.5, 5, and 10 mg/kg body weight revealed that higher doses (5 and 10 mg/kg) led to a significant elevation in sperm reactive oxygen species (ROS) production⁴¹. Exposure to 100 μ M fipronil (FPN) was found to induce apoptosis and cell cycle arrest during porcine oocyte maturation, likely due to elevated reactive oxygen species (ROS) levels.

Sr.no	Model	Doses	Duration	Interference	Reference
1.	32 Male	Fipronil	4 week	Fipronil exposure causes	Khan <i>et al.</i> ,(2015)
	rats	(2.5,5.0 and		significant damage to sperm,	
		10mg/kg)		including reduced viability,	
				motility, and acrosome	
				integrity. This damage is	
				likely due to increased	
				oxidative stress and lipid	
				peroxidation, leading to	
				sperm apoptosis.	
2.	Porcine	Fipronil	44 hours	Fipronil exposure impaired	Zhou <i>et al.</i> ,(2019)
	ovaries	(0,30,50,100µM		oocyte maturation by	Apoptosis
				Decreasing polar body	
				extrusion, Arrested germinal	
				vesicle stage, further Increased	
				ROS levels and DNA damage,	
				Enhanced apoptosis and	
				mitochondrial dysfunction,	
				Disrupted cell cycle progression	
				(CDK1 cyclin B-1)and	
				Activated ATM-P53-P21	
				pathway	

Fipronil impact on embroys

Embryotoxicity in fish exposed to fipronil, with malformations such as uninflated swim bladders at 100 µg/L, reduced body length at ≥ 200 µg/L, and spinal curvature at 400 µg/L. A dose-dependent relationship was observed between fipronil exposure and both reduced body length and curved body deformities⁶⁷. Investigated the effects of fipronil (0.1-910 µg L–1) on embryonic development in Japanese medaka (Oryzias latipes). Over a 14-day exposure period, they observed a positive dose-response relationship for reduced hatching success and increased gross deformities, particularly tail curvature. The lowest-observed-effect concentration was 200 µg L–1, while delayed

hatching occurred at concentrations $\geq 600 \ \mu g \ L-1^{68}$. Fipronil exposure at 1/10 LD50 (2.1 mg/kg b.wt) significantly decreased placenta weight, fetal weight, and fetal length. Furthermore, they observed various malformations, including head, thorax, and abdomen malformations, as well as cleft palate⁶⁹. Detrimental effects of fipronil on embryonic development in vitro at concentrations of 1 μ M and above. Stereomicroscopic evaluation revealed a concentration-dependent decrease in blastomere numbers at 10 μ M, and fluorescence staining showed a significant increase in cell death starting at 1 μ M. Complete degeneration of all embryos in female rats was observed following exposure to 10 μ M fipronil⁷⁰.

Sr.no	Model	Doses	Duration	Interference	Reference
1.	Zebrafish embryo	100 μg/L, 200 μg/L, 400 μg/L Fipronil	6 to 120 hpf	Significant embryotoxicity, inducing malformations such as uninflated swimbladders at 100 μ g/L, reduced body length at \geq 200 μ g/L, and spinal curvature at 400 μ g/L	Yan <i>et al.</i> , (2016)
2.	Japanese medaka (Oryzias latipes	fipronil concentrations ranging from 0.1-910 µg L-1 for	14 days	Significantly impacted embryonic development in with a positive dose-response observed in reduced hatching success and increased gross deformities, particularly tail curvatur	Wagner <i>et al.</i> , 2017
3.	Female pregnant rats	Fipronil's(2.1 mg/kg and 0.7 mg/kg b.wt)	6th to 15th days of pregnancy Statistical Analysis Weight analysis	Maternal weight gain decreased, Fetal body weight and length significantly decreased,Fetal abnormalities increased, Heart and lungs hypoplasia.	Eisa <i>et</i> <i>al.</i> ,(2017)
4.	Female rats	Fipronil in vitro(100, 10 and 1 μ M) and in vivo(0.009 and 0.9 mg/kg BW)	Starting on Day 1 and finishing on Day 3 of pregnancy In vivo experimental design In vitro experimental design	Fipronil hindered embryonic development,reduced blastomere numbers, Increased cell death, FIPRON spot-on caused massive embryo degeneration.	Šefčíková et al.,(2018)

CONCLUSION

Fipronil exposure has been consistently linked to reproductive toxicity, causing a range of adverse effects including testicular damage, reduced testosterone secretion, inhibition of estrogenic activity, and abnormal spermatozoa. These findings suggest that fipronil can have significant and long-lasting impacts on reproductive health, highlighting the need for careful consideration and management of its use to minimize potential har

REFERENCES

- 1. Tomlin, C. D. S. (2000). The Pesticide Manual British Crop Council. *Surrey*. 413–415. UK.
- 2. Ware, G. W. and Whitacre, D. (2000). The pesticide book 5th edn. *Thomson Publications, Fresno*, CA. 69.
- 3. Tingle, C. C., Rother, J. A., Dewhurst, C. F., Lauer, S. and King, W. J. (2003). Fipronil: environmental fate, ecotoxicology, and human health concerns. *Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews*.1-66.
- 4. Gupta, R. C. and Anadón, A. (2018). Fipronil. *In Veterinary toxicology*. 533-538. Academic press
- 5. Bonmatin, J. M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D. P., Krupke, C. and Tapparo, A. (2015). Environmental fate and exposure; Neonicotinoids and fipronil. *Environmental science and pollution research*. 22: 35-67
- 6. Gupta, R. C. (Ed.). (2012). *Veterinary toxicology: basic and clinical principles*. Academic press
- 7. Budd, R., Ensminger, M., Wang, D. and Goh, K. S. (2015). Monitoring fipronil and degradates in California surface waters, 2008–2013. *Journal of environmental quality*. 44(4): 1233-1240.
- 8. Richards, J., Reif, R., Luo, Y. and Gan, J. (2016). Distribution of pesticides in dust particles in urban environments. *Environmental Pollution*. 214: 290-298.
- Sadaria, A. M., Sutton, R., Moran, K. D., Teerlink, J., Brown, J. V. and Halden, R. U. (2017). Passage of fiproles and imidacloprid from urban pest control uses through wastewater treatment plants in northern California, USA. *Environmental Toxicology and Chemistry*. 36(6): 1473-1482
- Supowit, S. D., Sadaria, A. M., Reyes, E. J. and Halden, R. U. (2016). Mass balance of fipronil and total toxicity of fipronil-related compounds in process streams during conventional wastewater and wetland treatment. *Environmental science & technology*. 50(3):1519-1526
- 11. Ngim, K. K. and Crosby, D. G. (2001). Abiotic processes influencing fipronil and desthiofipronil dissipation in California, USA, rice fields. *Environmental Toxicology and Chemistry: An International Journal*. 20(5): 972-977
- 12. Ying, G. G. and Kookana, R. (2002). Laboratory and field studies on the degradation of fipronil in a soil. *Soil Research*. 40(7): 1095-1102
- Fowler, P. A., Bellingham, M., Sinclair, K. D., Evans, N. P., Pocar, P., Fischer, B. and O'Shaughnessy, P. J. (2012). Impact of endocrine-disrupting compounds (EDCs) on female reproductive health. *Molecular and cellular endocrinology*. 355(2): 231-239
- 14. Brennan, A. A., Harwood, A. D., You, J., Landrum, P. F. and Lydy, M. J. (2009). Degradation of fipronil in anaerobic sediments and the effect on porewater concentrations. *Chemosphere*. 77(1): 22-28.
- 15. Tomlin, C. D. S. (2006). The Pesticide Manual, A World Compendium, 14th edn. Hampshire, England. *British Crop Protection Council.* 462-464.

- 16. Caboni, P., Sammelson, R. E. and Casida, J. E. (2003). Phenylpyrazole insecticide photochemistry, metabolism, and GABAergic action: ethiprole compared with fipronil. *Journal of agricultural and food chemistry*. *51*(24):7055-7061.
- 17. Pavlidi, N., Vontas, J. and Van Leeuwen, T. (2018). The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. *Current opinion in insect science*. 27: 97-102
- 18. Chaton, P. F., Ravanel, P., Tissut, M. and Meyran, J. C. (2002). Toxicity and bioaccumulation of fipronil in the nontarget arthropodan fauna associated with subalpine mosquito breeding sites. *Ecotoxicology and Environmental Safety*.52(1): 8-12.
- 19. Aajoud, A., Ravanel, P. and Tissut, M. (2003). Fipronil metabolism and dissipation in a simplified aquatic ecosystem. *Journal of Agricultural and Food Chemistry*. 51(5): 1347-1352.
- 20. Ohi, M., Dalsenter, P. R., Andrade, A. J. and Nascimento A. J. (2004). Reproductive adverse effects of fipronil in Wistar rats. *Toxicoogy Letter*. 146:121–127
- 21. Leghait, J., Gayrard, V., Picard-Hagen, N., Camp, M., Perdu, E., Toutain, P. L. and Viguié, C. (2009). Fipronil-induced disruption of thyroid function in rats is mediated by increased total and free thyroxine clearances concomitantly to increased activity of hepatic enzymes. *Toxicology*. 255(1-2): 38-44
- 22. De Oliveira, P. R., Bechara, G. H., Denardi, S. E., Oliveira, R. J. and Mathias, M. I. C. (2012). Cytotoxicity of fipronil on mice liver cells. *Microscopy research and technique*.75(1): 28-35
- 23. Stafford, E. G., Tell, L. A., Lin, Z., Davis, J. L., Vickroy, T. W., Riviere, J. E. and Baynes, R. E. (2018). Consequences of fipronil exposure in egg-laying hens. *Journal of the American Veterinary Medical Association*. 253(1): 57-60
- 24. Mohamed, F., Senarathna, L., Percy, A., Abeyewardene, M., Eaglesham, G., Cheng, R. and Eddleston, M. (2004). Acute human self-poisoning with the n-phenylpyrazole insecticide fipronil—A GABAA-gated chloride channel blocker. *Journal of Toxicology: Clinical Toxicology.* 42(7): 955-963
- 25. Gupta, R.C. and Milatovic, D., 2014. Insecticides. Biomarkers in Toxicology. 389-407
- 26. Das, P. C., Cao, Y., Cherrington, N., Hodgson, E. and Rose, R. L. (2006). Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes. *Chemico-Biological Interactions*. *164*(3): 200-214
- 27. Islam, R. and Lynch, J. W. (2012). Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels. *British Journal of Pharmacology*. *165*(8): 2707-2720.
- 28. Wang, X., Martínez, M. A., Wu, Q., Ares, I., Martínez-Larrañaga, M. R., Anadón, A. and Yuan, Z. (2016). Fipronil insecticide toxicology: oxidative stress and metabolism. *Critical reviews in toxicology*. *46*(10): 876-899
- 29. Bae, J.W. and Kwon, W.S. (2020) Investigating the effect of fipronil on male fertility: insight into the mechanism of capacitation. *Reproductive Toxicolog.* 94: 1-7.

- 30. Khan, N. H., Jiang, E. and Qureshi, I. Z. (2023). Effect of Fipronil Exposure on Hematological Aspects of Rhesus Monkeys (Macaca mulatta): Risk and Toxicity Assessment in Agro-Workers. *Journal of Inflammation Research*, 5755-5765.
- 31. Adhikari, D., Agarwal, S. and Chandra, A. (2014). Effect of fipronil toxicity in haematological parameters in white leghorn cockerels. *Afr. J. Agric. Res*, *9*, 2759-2764.
- 32. El-Murr, A. E., Imam, T. S., Hakim, Y. and Ghonimi, W. A. M. (2015). Histopathological, immunological, hematological and biochemical effects of fipronil on Nile tilapia (Oreochromis niloticus).
- 33. Ghaffar, A., Hussain, R., Abbas, G., Kalim, M., Khan, A., Ferrando, S. and Ahmed, Z. (2018). Fipronil (Phenylpyrazole) induces hemato-biochemical, histological and genetic damage at low doses in common carp, Cyprinus carpio (Linnaeus, 1758). *Ecotoxicology*, 27, 1261-1271.
- 34. Abouelghar, G.E. and Zeinab, A.E.I. (2019). Bermawy biochemical and physiological alterations induced by exposure to the insecticide fipronil in albino mouse (mus musculus). *Menoufia Journal of Plant Protection*. 4(4): 175-176
- 35. Fredianelli, A. C., Pierin, V. H., Uhlig, S. C., GALEB, L., ROCHA, D. C. C., Ribeiro, D. R. and Pimpao, C. T. (2019). Hematologic, biochemical, genetic, and histological biomarkers for the evaluation of the toxic effects of fipronil for Rhamdia quelen. *Turkish Journal of Veterinary & Animal Sciences*, 43(1), 54-59.
- 36. Hussain, R., Ghaffar, A., Ali, H.M., Abbas, R.Z., Khan, J.A., Khan, I.A., Ahmad, I. and Iqbal, Z. (2018). Analysis of different toxic impacts of Fipronil on growth, hematobiochemistry, protoplasm and reproduction in adult cockerels. *Toxin reviews*. 37(4): 294-30
- 37. OSMAN,W. (2018). non-target impacts of fipronil bait using morphological alterations in the reproductive system of blaps polycresta (coleoptera: tenebrionidae) as a biomonitor. *journal of cell & tissue research*, 18(2).
- 38. Tohamy, H. G., El-Kazaz, S. E., Alotaibi, S. S., Ibrahiem, H. S., Shukry, M. and Dawood, M. A. (2021). Ameliorative effects of boswellic acid on fipronil-induced toxicity: antioxidant state, apoptotic markers, and testicular steroidogenic expression in male rats. *Animals*. 11(5): 1302
- 39. Verma, M. K. (2022). Evaluation of therapeutic efficacy of Amaranthus hypochondriacus seed extract in fipronil intoxicated rats with special reference to In Silico prediction of squalene-CYP3A1 gene interaction (Doctoral dissertation, GB Pant University of Agriculture and Technology, Pantnagar, District Udham Singh Nagar, Uttarakhand. PIN-263145
- 40. Abdel-Mobdy, Y. E., Abdel-Mobdy, A. E., AL-Farga, A. and Aqlan, F. (2024). Evaluation of the camel milk amelioration, the oxidative stress, fertility and mutagenicity of male albino rats exposed to lead acetate, fipronil, and their mixture. *Food Science & Nutrition*. 12(3): 1564-1572.
- 41. Khan, S., Jan, M.H., Kumar, D. and Telang, A.G. (2015). Khan, S., Jan, M.H., Kumar, D. and Telang, A.G. 2015. Firpronil induced spermotoxicity is associated with oxidative

stress, DNA damage and apoptosis in male rats. *Pesticide biochemistry and physiology*.124:8-14

- 42. Kairo, G., Provost, B., Tchamitchian, S., Ben Abdelkader, F., Bonnet, M., Cousin, M. and Brunet, J. L. (2016). Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. *Scientific reports*, 6(1), 31904
- 43. De Barros, A.L., Rosa, J.L., Cavariani, M.M., Borges, C.S., Villela e Silva, P., Bae, J.H., Anselmo-Franci, J.A. and Cristina Arena, A. (2016). In utero and lactational exposure to fipronil in female rats: Pregnancy outcomes and sexual development. *Journal of Toxicology and Environmental Health Part A*. 79(6): 266-273
- 44. Kairo, G., Poquet, Y., Haji, H., Tchamitchian, S., Cousin, M., Bonnet, M. and Brunet, J. L. (2017). Assessment of the toxic effect of pesticides on honey bee drone fertility using laboratory and semifield approaches: A case study of fipronil. *Environmental toxicology and chemistry*, *36*(9), 2345-2351.
- 45. Adikari, A. A. D. I., Chandanee, M. R., Kim, B. Y. and Yi, Y. J. (2022). Fipronil impairs the fertilization competence of boar spermatozoa. *Korean Journal of Agricultural Science*. 49(1): 103-112
- 46. Bae, J. W. and Kwon, W. S. (2024). Proteomic analysis of fipronil-induced molecular defects in spermatozoa. *Scientific Reports*. 14(1): 7668.
- 47. Saleh, H., Nassar, A.M.K., Noreldin, A.E., Samak, D., Elshony, N., Wasef, L., Elewa, Y.H.A., Hassan, S.M.A., Saati, A.A., Hetta, H.F., Batiha, G.E.S., Umezawa, M., Shaheen, H.M. and El-Sayed, Y.S.(2020). Chemo-Protective Potential of Cerium Oxide Nanoparticles against Fipronil-Induced Oxidative Stress, Apoptosis, Inflammation and Reproductive Dysfunction in Male White Albino Rats. *Molecules*. 25 (15): 3479.
- 48. Nakul, P. (2024) Pathomorphological studies on fipronil induced toxicity in male wistar albino rats and its amelioration with pomegranate peel extract (Punica granatum).48(1): 90-95
- 49. Cravedi, J.P., Delous, G., Zalko, D., Viguié, C. and Debrauwer L. (2013). Disposition of fipronil in rats. *Chemosphere*. 93(10): 2276–2283
- 50. Badgujar, P.C., Pawar, N.N., Telang, A.G., Kurade, N.P., Chandratre, G.A. and Kadave M.(2014). Histopathological alteration induced by subacute fipronil toxicity in mice and its amelioration by combination of α-tocopherol and ascorbic acid. *Indian journal of veterinary pathology*. 38(1):29-32
- 51. Khalil, S. R., Awad, A. and Mohammed, H. H. (2017). Behavioral response and gene expression changes in fipronil-administered male Japanese quail (Coturnix japonica). *Environmental Pollution*, 223, 51-61.
- 52. MUHAMMAD Suliman (2020) Histopathological Changes Induced In Mica Upon Acute Exposure To Fipronil Sulfone, An Ingredient Of Fipronil Insecticide
- 53. De Oliveira, P.R., Bechara, G.H. and Camargo-Mathias, M.I. (2008). Evaluation of cytotoxic effects of fipronil on ovaries of semi-engorged *Rhipicephalus sanguineus* (Latreille, 1806) (Acari: Ixodidae) tick female. *Food Chemical Toxicology*. 46: 2459– 2465.

- 54. de Oliveira, P. R., Bechara, G. H., Morales, M. A. M., & Mathias, M. I. C. (2009). Action of the chemical agent fipronil on the reproductive process of semi-engorged females of the tick Rhipicephalus sanguineus (Latreille, 1806)(Acari: Ixodidae). Ultrastructural evaluation of ovary cells. *Food and Chemical Toxicology*, 47(6), 1255-1264.
- 55. Magalhães, J.Z., Udo, M.S.B., Sánchez-Sarmiento, A.M., Carvalho, M.P.N., Bernardi, M.M., Spinosa, H.S. Prenatal exposure to fipronil disturbs maternal aggressive behavior in rats. *Neurotoxicolog and teratology*. *52* :11-16
- 56. Fular, A., Bisht, N., Sharma, A. K., Chigure, G., Nagar, G. and Ghosh, S. (2022). Evaluation of cytotoxic effects of amitraz and fipronil on digestive, reproductive and neural processes of engorged Rhipicephalus microplus (Acari: Ixodidae) female. *Ticks and Tick-borne Diseases*. 13(6): 102031
- 57. Secchis, M. V., Vale, L., de Castro Rodrigues, D., de Souza Perinotto, W. M., da Silva Matos, R., Lopes, T. R., and de Oliveira Monteiro, C. M. (2022). Effect of the formulation with fipronil and fluazuron on the reproductive biology and ovaries histopathology of Rhipicephalus microplus engorged females. *Parasitology Research*. 121(3): 839-849
- 58. Moser, V. C., Stewart, N., Freeborn, D. L., Crooks, J., MacMillan, D. K., Hedge, J. M. and Herr, D. W. (2015). Assessment of serum biomarkers in rats after exposure to pesticides of different chemical classes. *Toxicology and applied pharmacology*, 282(2), 161-174
- 59. Lu, M., Du, J., Zhou, P., Chen, H., Lu, C. and Zhang, Q. (2015). Endocrine disrupting potential of fipronil and its metabolite in reporter gene assays. *Chemosphere*.120: 246-251.
- 60. Okazaki, H., Kohro-Ikeda, E., Takeda, S., Ishii, H., Furuta, E., Matsuo, S., Matsumoto, M., Takiguchi, M. and Aramaki, H. (2016). Fipronil, an insecticide, acts as an antiestrogen via the concomitant down-regulation of ERα and PES1. *Fundamental Toxicological Science*. 3:33–37
- 61. Abdelrazek, H., Zeidan, D. W., Eltamany, D. A. and Ebaid, H. M. (2017). Uncaria tomentosa (cat claw) Counteracts Chronic Fipronil-induced Endocrine Disruption Induced Insulin Resistance and Hepatic Damage in Male Albino Rats. *Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology*, 9(2), 77-85.
- 62. Hu, K., Zhou, L., Gao, Y., Lai, Q., Shi, H. and Wang, M. (2020). Enantioselective endocrinedisrupting effects of the phenylpyrazole chiral insecticides in vitro and in silico. *Chemosphere*, 252, 126572.
- Zohree, H. A., Abdelmoteleb, A. M., Rezk, R. A., Saleh, M. A., Azab, D. M. and Hamed, E. O. (2023), Evaluation of spirulina efficiency on hormonal disruption induced by fipronil in Newzeland rabbit, Egyptian Journal of Animal Health 3(1): 1-10
- 64. Badawy, M.H., Ahmed, N.S. and Attia A.M. (2018). Sub-acute oral toxicity of Imidacloprid and fipronil pesticide mixture in male albino rats; biochemical and reproductive toxicity evaluation. *Journal of materials and environmental sciences*. 9 (8): 2431-2437.

- 65. Zhou, W., Niu, Y.J., Nie, Z.W., Kim, Y.H., Shin, K.T., Guo, J. and Cui, X.S. 2019. Fipronil induces apoptosis and cell cycle arrest in porcine oocytes during in vitro maturation. *Apoptosis*. 24:718-729.
- 66. Mazzo, M., Balieira, K.V.B., Bizerra, P.FV. and Mingatto, F.E. (2018). Fipronil induced decrease in the epididymal sperm count : oxidative effect and protection by vitamine E. *Animal reproduction*. 15(4): 1223-1230.
- 67. Yan, L., Gong, C., Zhang, X., Zhang, Q., Zhao, M. and Wang, C. (2016). Perturbation of metabonome of embryo/larvae zebrafish after exposure to fipronil. *Environmental toxicology and pharmacology*, 48, 39-45.
- 68. Wagner, S. D., Kurobe, T., Hammock, B. G., Lam, C. H., Wu, G., Vasylieva, N. and Teh, S. J. (2017). Developmental effects of fipronil on Japanese Medaka (Oryzias latipes) embryos. *Chemosphere*, *166*, 511-520
- 69. Eisa, A.A., Abo-Elghar, G.E., Ammar, I.M., Metwally, H.G. and Arafa, S.S. (2017). Embryotoxicity and teratogenicity of fipronil in rats (Rattus norvegicus). *Zagazig Journal of Agricultural Research*. 44(5):1851-1861.
- 70. Sefčíková, Z., Babel'ová, J., Čikoš, Š., Kovaříková, V., Burkuš, J., Špirková, A. and Fabian, D.(2018). Fipronil causes toxicity in mouse preimplantation embryos. *Toxicology*. 410: 214-221.